Skip to main content
Storage of Thermal REactor Safety Analysis data
  • PCCS

    Passive Containment Cooling System (PCCS) removes residual heat from upper drywell of the containment to the liquid pool surrounding the PCCS heat exchanger. It also has an important role in mitigating the offsite dose by retention of a fission product release in the containment. The operation of the PCCS is based on density differences between the containment and water pool

  • DEFOR

    The aim of the DEFOR (Debris Bed Formation) program is clarification of the phenomena that govern formation of the debris bed in different scenarios of corium melt release into a deep water pool and quantification of the debris bed properties related to coolability.

  • FARO_S

    FARO (Furnace And Release Oven) experimental facility began the experiments of the LWR-MFCI phenomena in 1990 in collaboration with several reactor safety research organizations from European Union member countries and with the participation of the United States Nuclear Regulatory Commission.

  • FIPRED-EQ

    The Institute for Nuclear Research Pitesti was founded in 1971 as a unit of strategic importance, having as field of activity the scientific research, design, technological development and scientific and technical responsibility for the development of nuclear energy in Romania.

  • TOSQAN

    The TOSQAN experimental vessel is a large stainless steel cylindrical enclosure (volume 7m3, height 4m, internal diameter 1.5m) with double walls. A coolant circulates in between the walls to regulate the wall temperature from 60 °C to 160 °C. Non radioactive aerosols, steam and non explosive gases can be injected at different controlled flow rates via diverse injection pipes located at different locations of the enclosure. Different instrumentation is used, namely PIV (particle image velocimetry), LDV (laser doppler velocimetry), rainbow refractometry, out of focus imaging and SRD (spontaneous Raman diffusion) spectrometry.

  • PACTEL

    The PACTEL facility is designed to model the thermal-hydraulic behavior of VVER-440 type pressurized water reactors currently used in Finland. These reactors have several unique features that differ from other PWR designs

  • QUENCH

    A research program on reflood of an overheated core and corresponding topics is running at KIT, including large scale bundle tests at IAM-WPT , various kinds of separate-effects tests at IAM-AWP , model development and code application.

  • ARISG

    The ARISG-I was developed to estimate the aerosol deposition in the near-field of tube breach under dry conditions. It was based on ‘filter concept’, which means that aerosol flowing through a bundle of obstacles is submitted to forces that tend to clean up the gas by removing particles onto obstacle surfaces. Under SGTR conditions, the major deposition mechanisms in the break stage are turbulent deposition and inertial impaction.

  • MISTRA

    The MISTRA facility is a steel cylindrical vessel with a top flat cap and a curved bottom. The internal volume is 99.5m3, the internal diameter - 4.25m, the height - 7.4m. The vessel is thermally insulated, but the wall temperature is not controlled. Three cylindrical condensers are inserted inside the vessel, close to the wall and one above the other (so that they span over most of the vessel height). The facility is designed in such a way that almost all steam condensation is supposed to occur on the interior side of the condensers. The facility was additionally equipped with sprays located below the vessel ceiling. The instrumentation includes devices for measuring pressure, temperature, gas concentration and velocity (laser Doppler anemometry).

  • EMAIC

    The objective of the EMAIC (Emission AIC) facility is to characterise the physico-chemical nature of the aerosol source term resulting from the vaporisation of control rod material made of the metals Silver (Ag), indium (In), Cadmium (Cd) after their cladding rupture during a PWR severe accident.

  • VULCANO

    The VULCANO facility is mainly composed of a furnace and a test section, which is thoroughly instrumented. In the experiments with prototypic material the furnace has the following characteristics:

    • Capability to melt oxidic mixtures of various compositions (UO2, ZrO2, SiO2, FeOx) with the possible addition of metals.
    • Liquidus temperature of the load between 1700 and 2900 °C.
    • Capacity to melt & pour 100 kg. •Continuous low pouring rates (0.1–1 l/s).
  • PHEBUS

    The PHEBUS FP (Fission Products) international research programme was conducted between 1988 and 2010. Its purpose was to improve the understanding of the phenomena occurring during a core meltdown accident in a light water reactor and to validate the computational software used to represent these phenomena in reactor safety evaluations. The report of the last test was published in December 2010 and was the topic of a closing seminar organised in June 2012.

Storage of Thermal REactor Safety Analysis Data

STRESA was developed by JRC-Ispra in the year 2000 with the main objective to disseminate documents and experimental data from large in-house JRC scientific projects, and has been extensively used in order to provide a secure repository of experimental data.

abaut us

About us

At present time the JRC is engaged in the management of this new version of the STRESA tool to secure the European Union storage for severe accident experimental data and calculations.

View more

abaut us

Use of STRESA

Only registered users may access and make use of the features available in this new version of STRESA. If you are already registered, just login using your ECAS credentials and start using the information system.

If you are not registered yet, or you are having troubles with the login, please contact the administrator.

Discover more about STRESA

Facilities Map